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The Legendre functions considered are certain solutions y = Pµ
ν (x), on −1 < x < 1 of the

following equation (see [1]):
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)
y = 0. (1)

In our report we discuss the possibility for an integrable function f to be expanded in series
of Legendre functions. The results presented generalize those obtained in [2].

Theorem 1. If (1 − t2)−1/4f(t) ∈ L(−1, 1) and f satis�es the Dini condition at a certain
a ∈ (−1, 1) (see e.g. [3]), |Reµ| < 1/2, ν is not a half of an odd integer, and

an = (−1)n
ν + n+ 1

2

2 cos νπ

1∫
−1

f(t)P−µ
ν+n(−t) dt,

then

f(x) =

+∞∑
−∞

anP
µ
ν+n(x),

where Pµ
k are determined in (1).

Sketch of the proof. ...
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